Characterization of the elastin binding domain in the cell-surface 25-kDa elastin-binding protein of staphylococcus aureus (EbpS).
نویسندگان
چکیده
Our previous studies have established that a cell-surface 25-kDa elastin-binding protein of Staphylococcus aureus (EbpS) mediates binding of this pathogen to the extracellular matrix protein elastin. Results from binding assays examining the activity of various EbpS fragments suggested that the elastin recognition domain is contained within the first 59 amino acids. In this report, we have used functional analyses with synthetic peptides and recombinant truncated forms of EbpS to localize the elastin binding domain to a 21-amino acid region contained within residues 14-34 of EbpS. Further evidence for the importance of this domain was obtained by demonstrating that the inhibitory activity of anti-EbpS antibodies on staphylococcal elastin binding was neutralized when these antibodies were pre-absorbed with a truncated recombinant EbpS construct containing residues 1-34. Overlapping synthetic peptides corresponding to EbpS residues 14-36 were then generated and tested for elastin binding activity to define further the elastin binding domain, and results from these studies showed that sequences spanning amino acids Gln14-Asp23, Asp17-Asp23, and Thr18-Glu34 inhibit binding of Staphylococcus aureus to elastin. Our analyses indicate that the hexameric sequence Thr18-Asn-Ser-His-Gln-Asp23 is the minimal sequence common to all active synthetic peptides, proteolytic fragments, and recombinant constructs of EbpS. Furthermore, substitution of Asp23 with Asn abrogated the blocking activity of the synthetic peptides, demonstrating the requirement for a charged amino acid at this location. The composite data indicate that staphylococcal elastin binding is mediated by a discrete domain defined by short peptide sequences in the amino-terminal extracellular region of EbpS.
منابع مشابه
Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus.
Interactions between staphylococci and components of the extracellular matrix mediate attachment of the bacteria to host tissues and organs and define an important mechanism leading to colonization, invasion, and formation of metastatic abscesses. We have previously demonstrated a specific binding interaction between Staphylococcus aureus and elastin, one of the major protein components of the ...
متن کاملThe Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children
Background:Isolates of Staphylococcus aureus express a myriad of adhesive surface proteins that play important role in colonization of the bacteria on nasal and skin surfaces, beginning the process of pathogenesis. The aim of this study was to screen several of the Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) genes among the isolate of S. a...
متن کاملThe N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin.
The ability of Staphylococcus aureus to adhere to components of the extracellular matrix is an important mechanism for colonization of host tissues during infection. We have previously shown that S. aureus binds elastin, a major component of the extracellular matrix. The integral membrane protein, elastin-binding protein (EbpS), binds soluble elastin peptides and tropoelastin via its surface-ex...
متن کاملThe elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein.
The elastin-binding proteins EbpS of Staphylococcus aureus strains Cowan and 8325-4 were predicted from sequence analysis to comprise 486 residues. Specific antibodies were raised against an N-terminal domain (residues 1-267) and a C-terminal domain (residues 343-486) expressed as recombinant proteins in Escherichia coli. Western blotting of lysates of wild-type 8325-4 and Newman and the corres...
متن کاملBinding of elastin to Staphylococcus aureus.
Many pathogenic bacteria specifically bind to components of the extracellular matrix. In this study, we report the specific association of Staphylococcus aureus with elastin, a major structural component of elastic tissue. Competition assays in which the binding of radiolabeled tropoelastin was inhibited by excess unlabeled elastin peptides, but not by other proteins, established the specificit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 5 شماره
صفحات -
تاریخ انتشار 1999